تعمیمی از مسئله هم متناهی بودن مدول های کوهمولوژی موضعی

thesis
abstract

چکیده ندارد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

هم متناهی بودن مدول های کوهمولوژی موضعی

در این رساله به بحث روی مدول های کوهمولوژی میپردازیم .و نشان میدهیم که تحت شرایط خاص ایدهال های اول وابسته i-امین مدول کوهمولوژی متناهی است

15 صفحه اول

هم متناهی بودن مدول های کوهمولوژی موضعی

فرض کنیم r حلقه ای نوتری و m یک r ـ مدول غیر صفر مولد متناهی باشد. همچنین فرض کنیم i ایده آلی از r و t یک عدد صحیح نامنفی باشد. در این پایان نامه ثابت می شود هرگاه r ـ مدول های (h_i^{t-1} (m) , . . . ,h_i^0 (m مینیماکس باشند آنگاه به ازای هر زیرمدول مینیماکس (h_i^t (m نظیر r ،n ـ مدول (hom_r((r/i,h_i^t (m)/ n مولد متناهی بوده و در نتیجه مجموعه ایده آل های اول وابسته h_i^t (m )/n متناهی است. در ...

15 صفحه اول

هم متناهی بودن مدول های کوهمولوژی موضعی تعمیم یافته

هدف این پایان نامه بررسی ساختار مدول های کوهمولوژی موضعی تعمیم یافته است.

هم متناهی بودن کوهمولوژی موضعی

?عضوم لودم یژولومهوک ندوب ?هانتم مه :یهل?سو هب روپن?سح داجس -rوsتبثم و ح?حص ددع د?نک ضرف ن?نچمه .دشاب نآ زا ?لآهد?اi و یرتون یاهقلحrد?نک ضرف هک دشاب یددع ن?لواsرگا تروص ن?ا رد .دشاب دلوم ?هانتمext s r (r=i; m)هک دنشاب یاهنوگهبmلودم assh s i (m)اذلودلوم?هانتم homr (r=i; h s i (m))م?نک?متباثها?نآ،تس?ن?هانتممه-i ،h s i (m) م?هاوخ ?سرربi =1;2یارب ارext i r (r=i; m)ندوب دلوم ?ه...

هم متناهی و متناهی بودن مدول های کوهمولوژی موضعی تعمیم یافته

فرض می کنیم r ‎ یک حلقه موضعی (نوتری) و جابجایی‏، ‎‎‎‎i‎ یک ایده آلی از ‎‎‎‎r‎ و ‎‎‎‎m‎‎‏، ‎n‎‎‎‎ دو ‎‎-r‎ مدول با تولید متناهی باشند. پس از بررسی خواص اساسی مدول‎‎های h‎‎‎‎_{‎i‎}‎^{‎i‎}‎(m,n) ‎‎ ‎نشان می دهیم‎‎ که ‎‎ f-depth (i+ann_{r}(m),n) = inf{ i?n_{0 | نیست آرتینیh_{i}^{i}(m,n)} سپس فرض می کنیم ‎‎‎‎t‎‎‎‎ یک عدد صحیح مثبت باشد. نشان می دهیم:‎ (‎1) اگر برای هر ‎ i<t ‎‎...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023